SHOCK WAVES IN SOILS AND IN WATER
NEAR THE POINT OF EXPLOSION
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This paper gives a solution to the problem of the propagation of a plane shock wave in soils
and in water; the solution was obtained by the method of characteristics using an electronic
computer. Here, the soils were regarded as multicomponent media, in accordance with a
previously proposed model [1, 2]. A comparison is made between the parameters of the
waves and the dimensions of the gas cavity in soils with a different content of their compo-
nents and in water.

1. Model of a Soil as a Multicomponent Medium

and Its Experimental Confirmation

A model of soils and rocks, including solid particles, water, and gas as multicomponent media, has
been proposed previously [1, 2]. It is assumed that the gaseous, liquid, and solid components of the medium
are compressed in accordance with the same law, but in a free state, i.e., respectively, in accordance with
the equations

r=nlz)
- i
p=p+ 5[ ()" —1] 1.3)

where p1, pg» and pg are the densities, and ¢, ¢;, and ¢; are the velocities of sound in the components, at
P Dy .
The equation of dynamic compressibility of a three-component medium is written in the form

%’___GI (%)-Y;l+a?[Ta(P‘Po)+1] +a l-'rs(p po)+1]_q 1 1.4)
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where oy, oy, oz are the contents of the gaseous, liquid, and solid components in the medium, by volume;
py is the debnsity of the medium at p =1y

ot ayt+ ooy =1, py= 0101 + Gapy + 30 (1.5)
The strength and the compressibility of the skeleton are not taken into account in this model; there~

fore, it is applicable only at pressures exceeding some value p*, above which, the compressibility of the

skeleton may be neglected. In accordance with experimental data [1, 3], the value of p* corresponds

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp- 151-159
May-June, 1972. Original article submitted December 22, 1971.

© 1974 Consultants Bureaw, a division of Plenum Publishing Corporation, 227 Wes¢ 17th Street, New York, N. Y. 10011.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. 4

copy of this article is available from the publisher for §15.00.

390



TABLE 1

Experiment Flsst Acal- Secox}d cal-} Third cal-
culation culation ] ‘culation.
p-1073, kg/cm? 68 | 107 | 68 | 107 | 68 | 107 | 68 | 107
p, g/em® 2,76 12.9212.68]2.77 | 2,60 (2.73]2.70 | 2.82
o/ 1.36 | 1.44 | 1,31 | 1.36 | 1.28 ] 1.35 | 1.33 | 1.39
TABLE 2 approximately to atmospheric pressure with ¢; = 0, to several atmo -
Thind ool spheres with @y = 0.02-0.04, to 5:10% kg/cm? at oy = 0.012-0.018,
Experiment- ngnca ) and to 20 -10% kg/em? at oy = 0.2-0.3. The value of p* exceeds by
- several times the value of the pressure at which the volumetric de-
p-1072, kg/em® a9 8 | 66 132.8 | 66 formation of the soil is equal to the volumetric content of the gaseous
S{vpg/cma- %gg ?% f;% f-gg component. At p < p*, when the compressibility of the soils is de-
0 . . . «

termined by the compressibility of the skeleton, models of an elas-
tic—plastic medium are applied to these soils {4, 5]. Experiments
show that, in the solution of certain wave problems at p < p*, not only the elastic and plastic, but also the
viscous properties of the soil, must be taken into account. Such a model was proposed in [3].

At pressures of tens and hundreds of thousands of atmospheres, near the point of explosion of an ex-
plosive, we may expect deviations in the properties of the soils from the model of a multicomponent me-
dium as the result of possible phase transformations of the solid component and of a change in Eq. (1.3).
The experimental data of [6] permit verifying the correspondence of the properties of the soil to the model
of a multicomponent medium at these pressures. Table 1 gives experimental values of the density of clay
Bay, corresponding to dynamic loading at two pressures [6] and to calculations using Eq. (1.4). The proper-
ties of clay By are: p, = 2.03 g/cm®; moisture content by weight w = 20%; p3 = 2.7 g/cm?®, which corresponds
to ay = 0.035, ay = 0.338, ag = 0.627.

Table 2 gives calculated and experimental values of the density of clay By, with the properties: py =
2.15 g/em?, w = 4%, pg = 2.7 g/cm®, which corresponds to @y = 0.146, o, = 0.088, oy = 0.766.

To verify the degree of effect of the values of pjcj and v used on the values of the density, three cal-
culations were made:

1} vy =6.29, ¢y =1620 m/sec, y; = 4, ¢3 = 4500 m/sec. The values of y, and of the nominal velocity
of sound in water, ¢y, were taken from [7], and the values of c; and y3 from {2];

2) y9=17,cy=1500 m/sec, y3 =7, c3 = 4500 m/sec;

3) vy, =6.29, cy =1620 m/sec, y3 = 4, c3 = 3780 m/sec. The values of y; and ¢y were taken from ex-
periments on the dynamic compression of quartz [8].

In all cases, the remaining values were identical: py=12 107 g /em?, ps =1 g/cm?, ps = 2.7 g/em?.

It follows from the data of Tables 1 and 2 that the calculated values of the density of soils, corres-
ponding to pressures of tens of thousands of atmospheres, at the chosen values of y; and ¢, differ between
themselves and from the experimental values, by several percent.

In addition to the equation for the compression of a medium, for the solution of plane one-dimensional
wave problems, we need to know the unloading equation. Experiments [6] show that in clays By and By, un-
loading, at pressures of tens of thousands of atmospheres, takes place along a line close to the loading line.
The velocity of sound, calculated under the assumption that the loading and unloading lines coincide (1.4),
is equal to 5420 m/sec in clay By; experiment yields a value of 5610 m/sec. For By, the difference is
somewhat greater. Thus, close to the point of explosion, clays with the above content of their components
can be regarded as media whose compression and unloading take place in accordance with Eq. (1.4).

2. Initial Parameters

In the solution of wave problems, schemes for the real and instantaneous detonation of explosives are
applied. For flat charges with a small thickness (on the order of cm) and a large area (on the order of m?,
with initiation of the explosion at one point, at distances sufficiently far removed from this point, the de-
tonation takes place simultaneously over the whole thickness of the charge. In this case, the scheme for
instantaneous detonation corresponds more closely to the actual process than the scheme ofa real detonation,
which agssumes the approach of the detonation wave along a normal to the surface of the charge.
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TABLE 3

Characteristics of Dimensionless Dimensional:
Media media parameters _parameters !

ay I o a,  |Pos g/cm,s‘! T [ up ] Vo PT-kékrﬂz‘f‘lT-m/s’eﬁc‘]" »g/em®

First 0
Second | 0.02
Third 0

0.166| 0.86 | 54.40® 696 2.42
0.165| 0.68 | 54.6.108 692 2.50
0.258| 1.10 |38.3.40% 1080 1.45

0.4 | 0.6 . .
0.33]0.65 | 2.05 0.582
1 0

Let us find the initial parameters of the wave. We consider a flat
!—T——S charge. Edge effects are not taken into account. The thickness of the
Ay I ! charge is 2[;. On both sides of the charge the medium is soil or water.

At t = 0, the charge detonates instantaneously. By virtue of symmetry,

A Y, the process is considered from one side, from the middle of the charge.
1} We use Lagrange variables (h is the mass, t the time). The origin of
:/i “ : coordinates is the point of symmetry. To the right of the boundary of the
7 Hp, ; charge (h = [jp,) a stationary shock wave S is propagated, and, to the left
along the products of the detonation, a rarefaction wave Ry (Fig. 1).
These waves are separated by a region of detonation products with con-
stant parameters. We denote the boundary between the rarefaction wave
and this region by Ry, and the boundary between the detonation products and the medium by T (a contact
discontinuity). At T, the velocity of the particles and the pressure are identical on both sides, while the
density undergoes a discontinuity. We denote by uT and pp the velocity of the particles and the pressure at
the contact discontinuity. These are the initial values for a wave in a medium

: f/”}p

Fig. 1

P=rpulo/0n)t 2.1)
With instantaneous detonation, as is well known

PnDn? ——
Pn= E—(Z_-!-T)— y Cp= Vg-kpnpn 1 (2.2)

where Dp, pp» and k are the given properties of the explosive; Dy, is the detonation rate; py is the density; k
is the isentropic index; cy is the velocity of sound.

: The equations of motion in the variables h, t have the form

" ou , dp =0 du oV
7 ’

wta =% wm—a=0 ' @:3)

In a rarefaction wave, the flow is determined by the equations

u::{:S]/—Tg—Z:dp-i—const, k:il/

which are special solutions of the system (2.3).

() t+ow, v=p (2.4)

The arbitrary function ¢ (u) and the constant quantity are determined from the boundary, conditions:
at Ry, we have p = py, u = 0; at Ry, we have u = up, p = p7, i.e., the same values as at the contact discon-~
tinuity and the shock wave. '

Taking account of the boundary conditions and of the equation of state (1.4) at k = 3, we obtain in the
rarefaction wave

h=—Ai+ lpo,, u+c=c,

—h - lop, \¥: — h 4 lop, \2
P [4
L. (L)”“ (2.6)
¢ Py
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At the front of the shock wave, the following relationships are satisfied

w="h'(Vo—7), p—po=hVo—V) @7
W= (p—po) (Vo —T)
where hy is the velocity of the front of the shock wave; Vy = po-i is the specific

volume of the medium ahead of the front; V and p are connected by the equa-
tion of the compressibility of the medium (V = V(p)).

We go over to dimensionless quantities and to dimensionless Lagrange

Fig. 2 variables
+ I3 ot =5 p*=L TR S L D*=£ t*=tm
B'n ’ pn 1 p pn ? cn H cn ? —2‘0—
' .
t
141 for the detonation products
I
—d . h
A L 8§ Az = 7w,
z for the medium
Fig. 3 h—lp,
z=1 Lopo
In the new variables, in the rarefaction wave
c*tt = (1 — z)'s (2.8)
PF (¥ = (1 — 2y (2.9)
Uk =4 ___]3/'P_* 2.10)
The relationships at the front of the shock wave are
= D* (1 - :;_:;) , Pt — Pt = Vig*D*u*’ U = _P:;(Vo* — V¥ (2.11)

The compression wave in a three-component medium, in dimensionless form, are

LAl ay <i> o + 0y [Tzv———————z* (P* — po¥) +1 ]—Yﬂ -+ dg [YaVa* (p* — po") + 1] it

Vo* PO* 362*2 3es*2
2.12)
1 a1, o, 0 x_ o w_ Ve *®_. 08 * 2
v tve e Gf=on Vsgn at=on Vs

In what follows, we omit the asterisks on the dimensionless quantities.

The initial parameters of a shock wave in a medium, pr, up, and Vi are determined by solution of
the system of Eqs. (2.10)-(2.12), expressing the equality of the velocity and the pressure at the contact dis-
continuity and the law of compression of the medium. These values, calculated for three media, are given
in Table 3.

It was assumed in the calculations that

V=14, 9 =7, v =17, p5 = 2.65 g/cm®

py = lg/em®, p; = 12 - 10~ g/em® ¢, = 4500m /sec
¢y = 1500 m/sec pn = 1.6 g/cm® D, = 6900m/sec
¢n = 4200 m/sec, pp = 94000 kg/cm?

The first medium (Table 3) corresponds to a water-saturated soil with a porosity of 0.4, not contain-

ing entrapped air, the second to a water-saturated soil with a porosity of 0.35, containing 2% air, and the
third, to water.
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In the first two media, the initial parameters are practically identical; in water the pressure is less,
while the velocity of the particles is greater. This is explained by the greater compressibility of water in
comparison with the two first media.

3. Propagation of the Wave

A schematic diagram of different solutions, corresponding to the detonation products and o the me-
dium in the plane xt, is shown in Fig. 2. An analytical solution can be obtained up to the moment of the de-~
parture of the reflected wave R; to the front of the shock wave. It is advisable, however, to go over to a
numerical solution at the moment when the front Ry has reached the initial cross section, i.e.,att=1. In
this case, from (2.8) and (2.9), we find the coordinates of the weak discontinuity R; and of the shock front S

xg) =1 — p;ls’ g = 1 + uTVO ('1 —_ VT)—]' (3 -1)
At the moment of time in the interval 0 < x =< xg)
p={1—2"2 u=1—1—2)" (3.2)
In the i 1 (2
n the interval xp’ =x = xg
p=pr, u=up, D=Dr=ugV,(Vo—Vr)* (3.3)
Further calculation is carried out in an electronic computer using the method of characteristics with

fixed time spacing [8]. This method permits determining a solution at points previously given in time and
space. In the variables h, t, the characteristic relationships have the form

du—+]/——dp at. dh = +1/ ( ) dt 3.4)
From this, in the dimensionless variables x, t, in the medium

=ty —gpap e de— £V, — 5 ()

In the variables x, t, in the detonation products

du = 4+ Yy p~hdp at dz = 4 p'dt
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In the problem under consideration, there are five types of
points, at each of which the parameters are calculated in accordance
with their own algorithms:

1) in the medium ahead of the shock wave S;

248 2) in the medium between S and T;

i 3) at the contact discontinuity T;

4) in the detonation products between T and the initial cross
section;

2 5) at the initial cross section.

4 To start the calculation, n points are selected in the detonation
P ~— products, and m points in the medium. At the points selected with
e — t =1, there enter the parameters determined from (3.2) and (3.3).

7 z Let us consider the sequence of the calculation of points at the
: front of the shock wave. Points A and B lie on one time. layer (Fig. 3).
Fig. 5 The values of the parameters at these points are unknown. Points B
and C lie at the front of the shock wave. The spacing with respect to
1 the spatial coordinate is assumed to be constant

A2
D.

Ax=m—§~1—), xcsz+Ax

The spacing with respect to time varies from layer to layer

Iz
2Az

Af = e |
Dg -+ Dg

tc =1g + Al

\ In the first time layer Dg = Dp. To start the calculation, the
:\ N values of D, p, and u from point B are carried over to point C. Then,
\ \\ \ a characteristic curve is dropped from point C onto the preceding

)

4 time layer. Its intersection with the line AB is designated as L. The
coordinates of this point are

L

av ( AT ' .
I\ o ()" R ] g
\ \ — A+ )= =123
\ 4

\ Here, B and C mean that the parameters relate to these points;
b2 N ”' the subscript CL means that the quantities in brackets are taken as
4 \& the mean values between C and L. The coordinate xy, found is used to
; 7 = determine the values of py, and uy, with interpolation with respect to
the parameters at the points A and B

04

Fig. 6

Pr,— By
PL=PA+xB__IA (1, — z4), uL==uA—I-

7y —7g A (2, — za)

Then, the values of py, and uy, found are used to determine the refined values of u, p, D, and V at the
point C, using the relationships at the front of the shock wave and the condition satisfying the characteris-
tic curve

3D, u zeVo a7
po—po=—=1 Do=y—5—, ”C:”L+[ "'T?i]?] — )
14 / —7t -1
c Pc \ ™ T2 Vz 1y T3pVa -
o= () e[ ] e [ ]

For purposes of refinement, three to four recalculations are made.
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The calculation is made in an analogous manner for the remaining four types of points, starting from
the characteristic relationships in the medium and in the detonation product, as well as from the condition
of the equality of u and p at the contact discontinuity.

The calculation was carried out in a BESM-4 electronic computer for the three media whose charac-
teristics are given in Table 3. A preliminary calculation was carried out with a number of points in the
medium and in the detonation products equal, respectively, to n, m, and 2n and 2m. The difference in the
results appeared in the fourth digit.

4. Results of Calculation

Let us consider the parameters at the contact discontinuity T, i.e., at the boundary of the gas cavity.
Figure 4 gives curves of the dimensionless quantities, i.e., the pressure p, the velocity of the shock wave,
u, and its displacement y, as functions of time. The numbering of the curves corresponds to the numbering
of the media in Table 3. In all the media, there was first observed a rapid drop of the pressure and the
velocity. Att > 80-100, the decrease in these parameters slows down considerably. In the second medium,
the pressure falls more rapidly with time, and the velocity more slowly than in the first. The displacement
of the boundary in the second medium is greater than in the first. The presence of entrapped air in water-
saturated soil leads to an increase in the dimensions of the gas cavity. Ina soil with oy = 0, the cavity is
smaller than in water. In a soil containing air, the cavity may be larger than in water.

For equalization of the scale, on Fig. 4 the dimensionless quantities p, 4u, and 0.05 y are plotted
along the axis of ordinates. The scale of the dimensional quantities is determined from the condition: p=
0.1 corresponds to a pressure of 9.4 -10° kg/cm?, a velocity of 105 m/sec, and a displacement of 2/;.

Let us consider the parameters at the front of the wave.

Figure 5 gives curves 1-3 for the dependence of the pressure at the front on the distance, in the three
media under consideration, and Fig. 6 gives the velocities of the front and the velocities of the particles at
the front in the same media. The presence of even a small amount of air (o = 0.02) in a water-saturated
soil leads to an appreciable lowering of the pressure, the velocity of the particles, and the velocity of the
front. With increasing distance from the point of explosion, in a soil with «; = 0.02, p, u, and D decrease
more rapidly than with o4 = 0. This result has been previously obtained experimentally [2]. In water,

- the pressure and the velocity of the front are less, and the velocity of the particles is greater, than in soil
with ¢4 = 0. With increasing distance from the point of explosion, p and D in a soil with oy = 0.02 decrease
more rapidly and become less than in water.

On Fig. 7, curve 1 corresponds to the change with time of the pressure at the front of the shock wave
in the first medium, while curves 2-10 correspond to the change in the pressure at fixed points in space (at
particles) with coordinates x equal to 1, 12, 36, 60, 84, 120, 144, 168, and 192. With increasing distance
from the point of explosion, the rate of drop of the pressure behind the front decreases, and the time of
action of the wave increases. The degree of increase may be characterized by the dimensionless quantity
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g, equal to the time during which the pressure at the point in space under consideration decreases from its
maximal value p, to 0.05 p,,- The corresponding dimensional time 6ty = 6y/cp. The values of ¢ are given
below; ¢y relates to the first, and gy to the third medium.

z 1 1 12 22 33 36 44 55 50

66 3 — 105 230 295
6: 31 80 — 130 185 — 220 260 —

With ¢y = 0.02, the value of ¢ is greater by several percent than with oy = 0. In all cases, with in-
creasing distance from the point of explosion, the rate of increase in ¢ declines.

Thus, the wave parameters were obtained in three media near the point of explosion. The calculations
correspond to the experimental data [2], showing that, at the front in a water-saturated soil with o4 = 0, p,
u, and D have greater values than in water. Even a small (oy = 0.02) amount of air in a water-saturated
soil leads to an appreciable decrease in the values of p, u, D. With increasing distance from the point of
explosion, the rate of decrease in these quantities in a soil containing air increases in comparison with a
soil where oy = 0. The time of action of the wave increases with increasing distance.

The authors thank S. S. Grigoryan and N. I. Polyakov for their evaluation of the work.

LITERATURE CITED

1. G. M. Lyakhov, "Shock waves in multicomponent media," Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk,

Mekhanika i Mashinostroenie, No. 1 (1959).

G. M. Lyakhov, Principles of the Dynamics of Explosion in Soils and Liquid Media [in Russian}, Izd.

Nedra, Moscow (1964).

3. G. M. Lyakhov and N. I. Polyakova, Waves in Dense Media and Loads on Equipment [in Rus51an] Izd.
Nedra, Moscow (1967).

4. S . 8. Grigoryan, "The basic concepts of the mechanics of soils," Prikl. Matem. i Mekhan., 24, No. 6
(1960).

5. Kh. A. Rakhmatulin, A. Ya. Sagomonyan, and N. A. Alekseev, Problems in the Dynamics of Soils
[in Russian}, Izd. MGU (1964).

5. L. V. Al'tshuler and M. N. Pavlovskii, "Investigation of clay and argillaceous shale under strong dy-
namic effects," Zh. Prikl. Mekhan. i Tekh. Fiz., No. 1 (1971).

7. B. V. Zamyshlyaev and Yu. S. Yakovlev, Dynamic Loads with an Underground Explosion {in Russian],
1zd. Sudostroenie, Leningrad (1967).

8. G. A. Adadurov, A. I. Dremin, S. V. Pershin, V. N. Rodionov, and Yu. N. Ryabinin, "The shock com-
pression of quartz," Zh. Prikl. Mekhan. i Tekh. Fiz., No. 4 (1962).

Do

9. N. E. Hoskin, "The method of characteristics for solution of the equations of one-dimensional fully
established flow," in: Calculational Methods in Hydrodynamics [Russian translation], Izd. Mir, Mos-
cow (1967).

397



